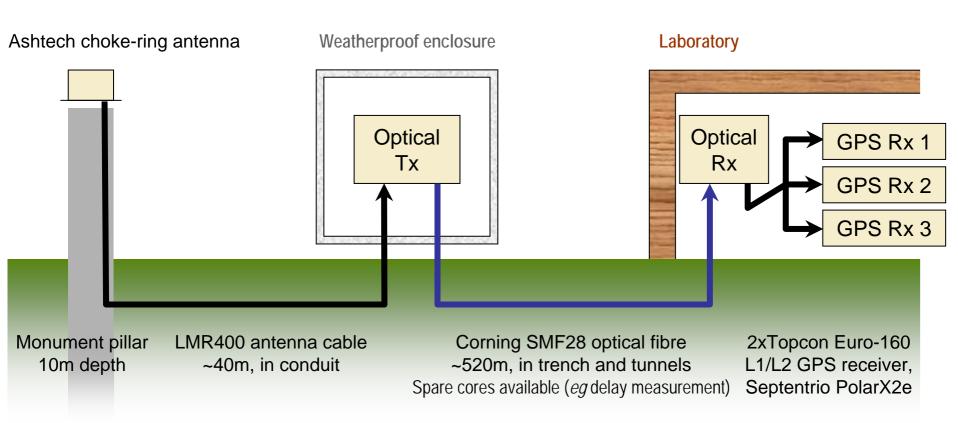


Report on BIPM receiver calibration visit at NMIA October 2010

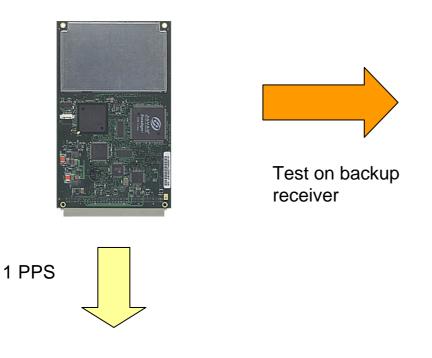
Michael Wouters, NMIA

Iteration 1: failed antenna



Iteration 2: Five months later ...

NMIA receiver setup (SYDN)

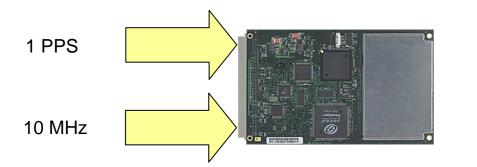


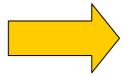
Receiver reconfiguration

Javad Euro GGD (SYDN)

Javad Euro GGD (NMI4)

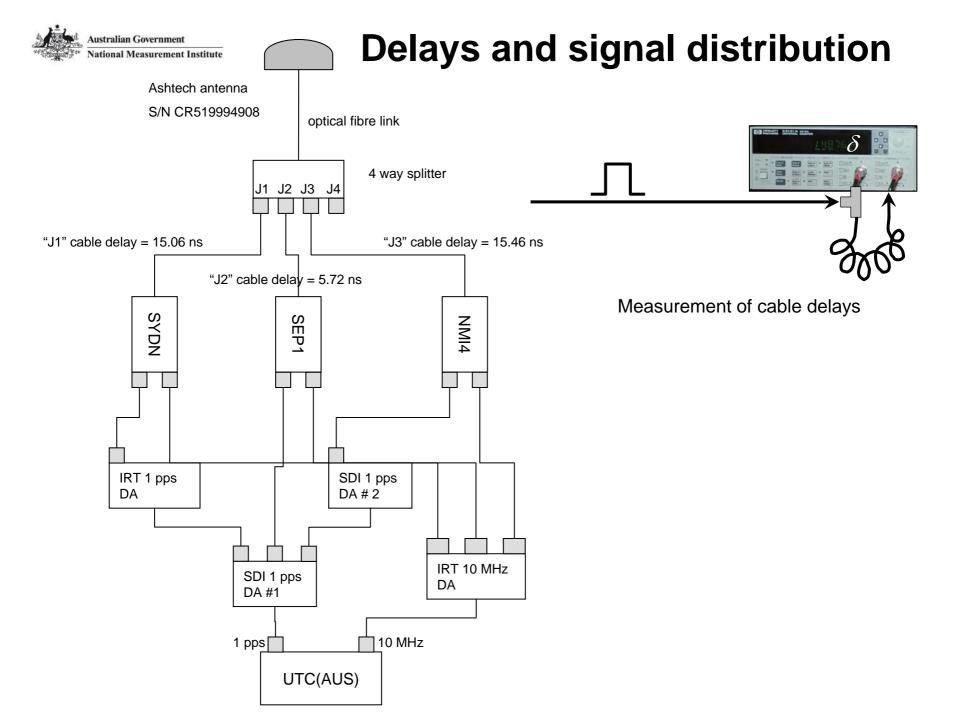
The output 1 pps is normally tied to the reference time scale (GPS)


but


The calibration protocol required that it be untied.

Operational changes

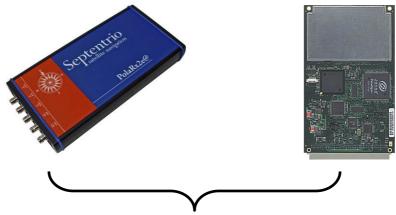
Javad Euro GGD



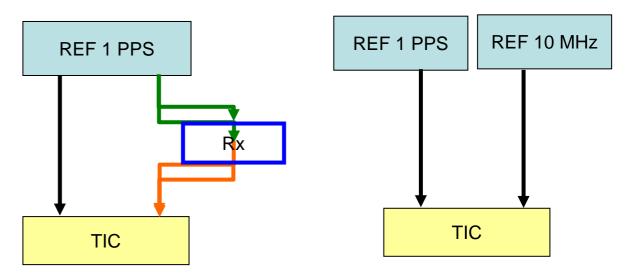
Need to be mindful of changes to the 10 MHz distribution

Monitor output 1 pps wrt input 1 pps to detect changes

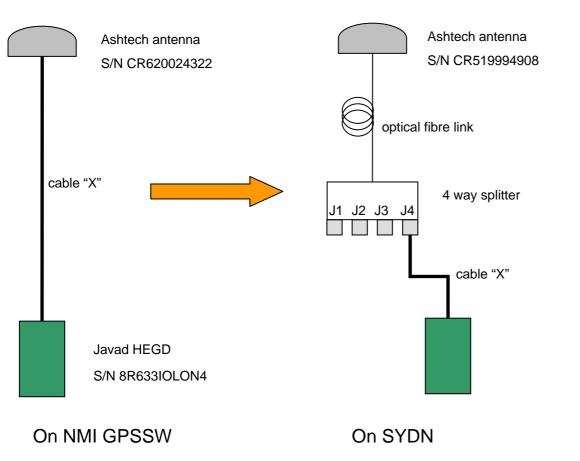
Internal delay as defined by the calibration protocol depends on the phase difference between the 1 PPS and 10 MHz

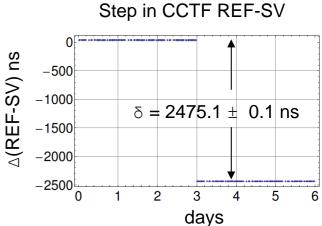


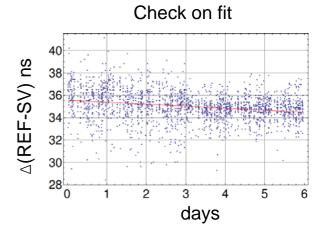
Local delay measurements


travelling receiver

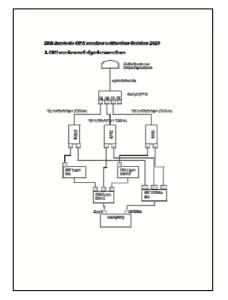
only need to measure the delay of the reference 1 pps input

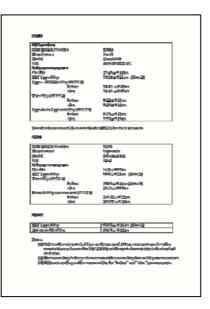


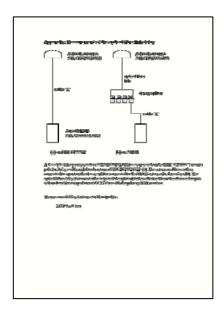

Insertion delay measurement to measure the delay between the input 1 pps and output 1 pps.



Optical fibre link delay measurement







Documentation

signal distribution

event log receiver information antenna information

delays

Shipping problems

Lesson: dealing with these kinds of problems can be the hardest part

BIPM report

XP: From external reference to 1PPS in

PolaRx2 XO: From 1PPS in to internal reference (i.e. 1PPS out (Meas 3.4) delayed by 8.7 ns)

Javad Euro GGD: XO From 1PPS-in to 1PPS-out (taken as "internal reference")

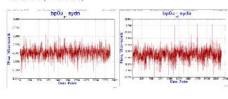
XC, XD: Cables etc... from antenna to receiver (typically XC is long cable, XD is short cable(s) + splitter if needed)

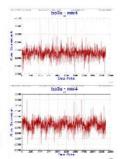
XR: receiver internal delay; XS antenna delay

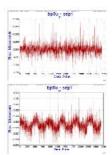
Reference values for BP0U (provisional August 2010): XR1+XS1 = -7.6 ns XR2+XS2 = -2.7 ns

Set-up at NMIA October 2010

x y	Z	Ref - PPSin / nt	Meas 3.1 (3.3) / ns	Meas 3.2 / ns	Ant. Cable / ns
BP0U (GTR50)		95.7	N/A		XC = 182.0 ns
		XP = 95.7 ns	Int ref - 1PPSin (XO) = N/A ns		XC+XD = 182.0 ns
INT_DLY0 = -99.07 ns			REF DLY = 95.7 ns		CAB DLY = 128.5 ns
SYDN (Euro GGD	S/N AGE3N	90.1	-7.4 / -7.3 (before/after)		XC = 2474.9 ns; XD = 15.1 ns
		XP = 90.1 ns	Int ref - 1PPSin (XO) = -7.3 ns		Short baseline: XC+XD = 2490.0 ns
NMI4 (EURO GGI	O S/N AGGT	99.1	-2.1 / -2.3 (before/after)		XC = 2474.9 ns; XD = 15.5 ns
		XP = 99.1 ns	Int ref - 1PPSin (XO) = -2.2 ns		Short baseline: XC+XD = 2490.4 ns
SEP1 (PolaRx2 S	/N 3252)	80.0	237.5 / 236.8 (before/after)		XC = 2474.9 ns; XD = 5.7 ns


XP = 80.0 ns Int ref - 1PPSin (XO) = 245.8 ns


Observations


Short baseline: 55476-55482, doy 280-286 (7-13 October 2010).

Measurement results

13/10/2010 (L. Tisserand)

Short baseline: XC+XD = 2480.6 ns

NMH Short baseline: SYDN Short baseline:

Delta (-XP-XO+XR1+XC+XD+XS1) (SYDN - BP0U) = 2357.3 ns (NM4-BP0U) = 2345.2 ns Delta (-XP-XO+XR2+XC+XD+XS2) (SYDN - BP0U) = 2366.1 ns (NM4-BP0U) = 2344.4 ns SEP1 Short baseline: (SEP1-BP0U) = 2329.8 ns (SEP1-BP0U) = 2326.0 ns

Calibration results

03/03/2011 (G. Petit)

BP0U: -XP-XO+XR2+XC+XD+XS2 = 50.8 ns

BP0U: -XP-XO+XR1+XC+XD+XS1 = 45.9 ns For BP0U, XC+XD-XP-XO is the difference between the actual value (86.3 ns) and the value entered in the receiver (128.5-95.7 = 32.8 ns)

C VD = 2407.2 ns

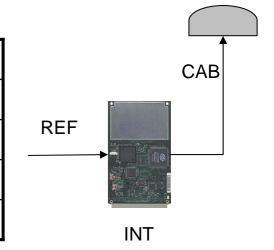
Therefore

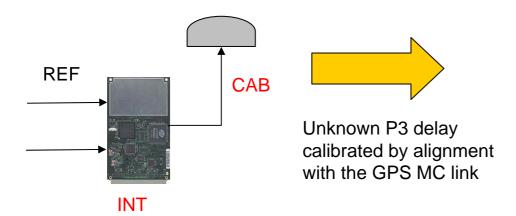
NMI4: XR1+XS1 = -2.4 ns NMI4: XR2+XS2 = 1.7 ns

NMI4: -XP-XO+XC+XD = 2393.5 ns

SEP1: -XP-XO+XC+XD = 2154.8 ns

SEP1: XR1+XS1 = 220.9 ns SEP1: XR2+XS2 = 222.0 ns


SYDN: XR1+XS1 = -4.0 ns SYDN: XR2+XS2 = 9.7 ns



Checking the receiver delays

Primary receiver (Topcon Euro-80) no ext. 10 MHz, 1 pps sync

	L1 C/A delay	(ns) Reference
	46.5	Transfer from our TTR6
2002	37,5 ± 4	BIPM_H
2004	37,6 ± 4	BPON
2005	42,3 ± 3	OP-APMP

Using the new P3 calibration get a delay of

33.4 ns

Correct by +4 ns for C/A - P1 delay

37.4 ns

BIPM assigns $u_B = 5$ ns to all GPS links calibrated via a receiver comparison (G.Petit)

This presentation will be available on the NMIA ftp server

ftp://time.nmi.gov.au/APMP2012

National Measurement Institute Bradfield Road West Lindfield NSW 2070 Australia

Phone: +61 2 8467 3501

Email: michael.wouters@measurement.gov.au

Web: <u>www.measurement.gov.au/time</u>

