
GPS-Related Activities at the
CSIRO National Measurement Laboratory, Australia

Peter Fisk1, Tim Armstrong2, Duncan Butler1, Malcolm Lawn1, and Bruce Warrington1

1 National Measurement Laboratory

CSIRO Telecommunications and Industrial Physics
PO Box 218, Lindfield NSW 2070

Sydney, Australia
Email: peter.fisk@tip.csiro.au

2 Measurement Standards Laboratory, New Zealand

Abstract

The CSIRO National Measurement Laboratory (NML) has been actively pursuing the
development of useful, reliable and low-cost GPS based systems for precise time and frequency
transfer with the integrity and reliability required of a national timing laboratory. This paper
outlines the systems, and some applications.

1. Introduction

There is a need within Australia for systems capable of high-integrity time and frequency transfer
and remote operation. The initial motivation for developing these systems at NML was to provide
a “turnkey” solution for customers who wished to maintain high-accuracy, high-integrity
frequency and time traceability from a Cs or Rb frequency standard to NML without the
inconvenience of shipping the standard to NML for calibration.

The NML Timing Systems in their most basic form consist of an Intel-based PC running the
Linux operating system, a commercially available GPS receiver board and antenna, and a
commercially available counter-timer. NML’s philosophy was to use relatively generic hardware,
and to make the software as independent as possible of the hardware. This allows the system to be
flexible, and capable of extensive future development as customer demand changes and hardware
technology and availability evolves. Because the system is controlled by a Linux-based computer,
it can perform many different functions in addition to GPS Common-View time transfer, and can
be controlled and monitored remotely via the Internet or a telephone line.

There are presently ten NML Timing Systems operating outside NML’s Sydney premises,
including eight outside Australia. Extended versions of these systems have also proved to be
useful and reliable as remotely-operable Network Time Protocol servers, TV-Sync monitoring
stations, and GPS integrity monitoring stations.

2. System Architecture

The GPS Common-View technique as specified by BIPM’s Consultative Committee on Time and
Frequency (CCTF) was selected as the most suitable time transfer protocol for legal traceability to
NML, due to its high immunity to undetected errors arising from poor reception of GPS signals
and failures in the GPS constellation. Because this technique involves the comparison of
electrical pseudoranges with geometric ranges to individual satellites, a receiver which is capable
of outputting extensive raw GPS data is required. To our knowledge, the only low-cost receiver

satisfying this requirement is the Motorola VP Oncore, and this receiver is used in all of the
currently operating NML Timing Systems. The VP Oncore is a single-frequency L1 receiver. The
hardware of the Motorola-based version of the NML Timing System is shown schematically in
Figure 1.

The Motorola company unfortunately ceased production of the VP Oncore in early 2000. The
only source of presently available replacement receivers appears to be the Javad company (now
Topcon Positioning Systems), which is advertising both single- and dual-frequency receivers;
these will enable the NML Timing System to be extended to dual-frequency operation. However,
at the time of writing, NML has not tested these receivers.

The software architecture is described in Appendix A. A modular approach was used to simplify
the software development and debugging process, and to permit extension of the software to new
GPS Common-View data processing protocols and the accommodation of new hardware such as
dual-frequency receivers. The software is written in the C and Perl programming languages using
the public domain compilers, interpreters and libraries typically distributed with the Linux
operating system.

3. Performance

Figure 2 shows a zero-baseline comparison between the CCTF-format files generated by the
Motorola-based NML Timing System and an Allen Osborne Associates TTR6 receiver sharing a
common timing reference. Similar comparisons using a third GPS Common-View receiver (3S
Navigation R-100T) indicate that the apparent drift (17.3 ps/day) is most likely not due to the
Motorola-based system. The reason for this drift is not yet understood.

4. Application as an NTP Server

Since early 2000, NML has used these systems very successfully as remote Network Time
Protocol (NTP) servers. These NTP servers consist of the basic NML Timing System as shown in
Figure 1, together with a Rb or Cs clock which can be controlled via a serial connection to the
Linux PC. The epoch of the 1 pps output of the clock is maintained with respect to UTC(AUS)
using the standard GPS Common-View time transfer technique. The 1 pps signal is monitored
from the Linux PC via a simple circuit which uses the pulse to trigger sending an ASCII carriage
return character over a serial link. The arrival of this character at the PC serial port is used as a
precise timing reference by an NML-developed driver installed in the standard NTP software
suite on the Linux PC. A second GPS receiver is used to generate a timestamp for the 1 pps pulses,
which is received by a second custom driver. NML operates these systems in Sydney, Melbourne
and Perth, and the installation of further systems in other cities is planned.

5. Conclusion

Because the NML Timing System is based on a standard yet powerful multi-tasking UNIX-like
networked operating system, and uses reasonably generic hardware, it will be maintainable and
extendable into the foreseeable future. NML has installed remote systems in a number of
locations, where they provide (in various combinations) precise frequency references, precise
time references and NTP services. The systems have proved reliable, and the ability to log in
remotely with complete access to all software and operating system functions has made remote
upgrades, maintenance, user support and troubleshooting a practical proposition.

Appendix A: Brief descriptions of software comprising the
NML CCTF Common-View time-transfer system

This appendix briefly describes the software components of the NML GPS common-view time
transfer system. This system downloads pseudorange, ephemeris, almanac and other data on a
continuous basis from a Motorola VP Oncore GPS engine, and processes it into the format
specified by the BIPM CCTF working group on time transfer standards.

A.1 Hardware

The software in its current form (June 2000) requires the following hardware:

• PC compatible computer, Pentium 2, 233 MHz or better, with at least 16 MB of RAM
• CDROM drive and about 3 GB of hard disk space.
• Network card or modem
• Agilent HP53131 or HP53132 counter/timer
• IOTech Micro-488 serial/GPIB converter
• Motorola VP Oncore GPS engine, with 1 pps timing output option, and antenna

Minor modifications to the software would be required to use a different counter/timer. A version
of the software for a Javad L1 and L1/L2 GPS engine (which has a suitable instruction set) is
under development. Motorola’s web page states that the VP Oncore receiver has been
discontinued since 31 Dec 1999.

A.2 Main system

These are the programs which run either continuously or daily as part of the process of generating
daily CCTF-format time transfer data. They run under the Linux operating system. It may be
helpful to refer to the system block diagram included at the end.

Program: process
Author: Peter Fisk, Bruce Warrington, Duncan Butler
Description: A Perl script which orchestrates the processing of the raw data from the Motorola

VP Oncore receiver and the Agilent counter. It executes a sequence of subsidiary
processing programs, and refers to intermediate temporary data files placed in the
/tmp directory which are deleted at the completion of processing.

Usage: process [MJD]
 The MJD is optional. If it is omitted, the data for the previous MJD is processed.
Execution: Under normal circumstances, this script is executed shortly after 00 UTC by a cron

job.

Program: proc2
Author: Peter Fisk, Bruce Warrington, Duncan Butler
Description: Exactly the same as process, except that it does not delete the temporary files. It is

intended for debugging purposes.
Usage: proc2 [MJD]
 The MJD is optional. If it is omitted, the data for the previous MJD is processed.
Execution: Normally executed manually.

Program: onclog
Author: Tim Armstrong, Bruce Warrington

Description: A C++ program which sets up the Oncore GPS receiver with parameters from the
cctf.setup file, instructs the GPS receiver to output the relevant data and logs this
data into the file MJD.rxrawdata. It is usually configured to maintain the computer
system clock within about 0.2 seconds of UTC. This feature can be disabled where
it is desired that the system clock be kept on time by another method (such as NTP).

Usage: onclog <setup_file>
 The setup file (usually cctf.setup) contains the parameters for the receiver. Only

the antenna coordinates should need to change.
Execution: Normally started by the Perl script check_rx, which in turn is normally executed as

a regular cron job.

Program: get_counter_data
Author: Peter Fisk, Steve Quigg
Description: A Perl script which logs the data from the HP53131 counter into a file MJD.cvtime.

Counter configuration parameters such trigger levels are in the file counter.setup,
and may be edited by the user. Note that this file is read only when
get_counter_data starts.

Usage: get_counter_data
Execution: Normally started by the Perl script check_cntr, which in turn is normally executed

as a regular cron job.

Program: rinexlog
Author: Bruce Warrington
Description: A Perl script which extracts the relevant data from the file MJD.rxrawdata and

formats it into a RINEX file. The output is piped by the process or proc2 scripts to
the file MJD.rinex.

Usage: rinexlog <rawdatafile>
Execution: Normally executed by the process or proc2 scripts.

Program: readlog
Author: Peter Fisk
Description: A C program which extracts the pseudorange, receiver clock correction, receiver

status, satellite health and other data from the MJD.rxrawdata file. The current
number of leap seconds is read from the RINEX file, to convert from GPS time used
by the receiver to UTC. The output is piped by the process or proc2 scripts to the
file MJD.notime.

Usage: readlog <rawdatafile> <rinexfile>
Execution: Normally executed by the process or proc2 scripts.

Program: combine
Author: Peter Fisk
Description: A Perl script which merges the time-stamped counter reading extracted from the

MJD.cvtime file with the corresponding pseudorange readings for the eight channels
of the GPS receiver in the MJD.notime file. The output is piped by the process or
proc2 scripts to the file MJD.cvdata.

Usage: combine <notimefile> <timefile>
Execution: Normally executed by the process or proc2 scripts.

Program: schedule_extract_all
Author: Peter Fisk, Duncan Butler
Description: A C program which extracts only the data relevant to the current BIPM tracking

schedule for the present day. The BIPM tracking schedule is held in a file called
sched. The output is piped by the process or proc2 scripts to the file

MJD.cvdata.cctf.all.
Usage: schedule_extract <MJD.cvdata> <MJD>
Execution: Normally executed by the process or proc2 scripts.

Program: track_sort
Author: Duncan Butler
Description: A C program which sorts the multi-channel output from schedule_extract_all into

a form which the remainder of the processing software will recognise. The input file
contains data for every visible satellite during a scheduled track; the output is sorted
into individual satellite tracks, and is piped by the process or proc2 scripts to the file
MJD.cvdata.cctf.

Usage: schedule_extract <MJD.cvdata.all> <MJD>
Execution: Normally executed by the process or proc2 scripts.

Program: quadfits
Author: Peter Fisk
Description: A C program which performs the quadratic fitting specified in section (ii) of Annex

II of the “Technical Directives for the Standardisation of GPS Time Receiver
Software” document. The output is piped by the process or proc2 scripts to the file
MJD.15_sec_fits_cctf.

Usage: quadfits <MJD.cvdata.cctf> <MJD.rinex>
Execution: Normally executed by the process or proc2 scripts.

Program: corrections2
Author: Peter Fisk, Bruce Warrington, Malcolm Lawn, Duncan Butler
Description: A C program which performs the corrections specified in sections (iii), (iv) and (v)

of Annex II of the “Technical Directives for the Standardisation of GPS Time
Receiver Software” document. It reads the antenna coordinates from the file
specified in the command line. The output is piped by the process or proc2 scripts
to the file MJD.15_sec_fits_corr.

Usage: corrections1 <MJD.15_sec_fits_cctf> <MJD.rinex> <MJD> <coordinate_file>
Execution: Normally executed by the process or proc2 scripts.

Program: linearfits
Author: Peter Fisk
Description: A C program which performs the linear fitting specified in section (iii) of Annex II

of the “Technical Directives for the Standardisation of GPS Time Receiver
Software” document. The output is piped by the process or proc2 scripts to the file
MJD.cctf.final.

Usage: linearfits <MJD.15_sec_fits_corr>
Execution: Normally executed by the process or proc2 scripts.

Program: checksums
Author: Peter Fisk
Description: A Perl script which adds the checksums specified in Annex III of the “Technical

Directives for the Standardisation of GPS Time Receiver Software” document. The
output is piped by the process or proc2 scripts to the file MJD.cctf.final, which is
the complete CCTF output file.

Usage: checksums <MJD.cctf.nocksum>
 where MJD.cctf.nocksum is created by prepending cctf_header (containing the

header information) to MJD.cctf.final.
Execution: Normally executed by the process or proc2 scripts.

A.3 Utility programs

These programs are run when configuring or troubleshooting the system.

Program: oncstat_CV
Author: Peter Fisk
Description: A Perl script which returns status information on the Oncore GPS receiver. Note

that when the onclog process is running, oncstat_CV, or any other program which
accesses the GPS receiver, should NOT be run. Remove the crontab (which would
otherwise restart onclog), kill the onclog process, and execute turnoff.data before
running this command.

Usage: oncstat_CV
Execution: The user.

Program: turnoff.data
Author: Peter Fisk
Description: A Perl script which tells the GPS receiver to stop sending data continuously. This

program must be run before oncstat_CV will work, if the GPS receiver was set up by
onclog. Note that when the onclog process is running, turnoff.data, or any other
program which accesses the GPS receiver, should NOT be run. Remove the crontab
(which would otherwise restart onclog) and kill the onclog process before running
this command.

Usage: turnoff.data
Execution: The user.

Program: coldstart_CV
Author: Peter Fisk
Description: A Perl script which tells the Oncore GPS receiver to discard all ephemeris, almanac,

setup and position data, and to start from scratch with default settings. Note that
when the onclog process is running, coldstart_CV, or any other program which
accesses the GPS receiver, should NOT be run. Remove the crontab (which would
otherwise restart onclog) and kill the onclog process before running this command.
The progress of the receiver restart can be monitored using oncstat_CV.

Usage: coldstart_CV
Execution: The user.

A.4 The crontab file

This file is used to schedule automatic execution of software, in particular the daily processing of
data and the automatic check (usually every 5 minutes) that the receiver and counter logging
processes are both running. This allows the system to start logging data automatically on power
up once the crontab file has been installed, typically by executing crontab crontab. Once
installed, it does not need to be re-installed if the machine is rebooted. It can be removed using
crontab -r to prevent the logging processes from starting automatically.

Acknowledgments

The authors would like to thank Colin Coles and Steve Quigg for their extensive assistance with
hardware development.

References

Allan, D. W. and Thomas, C., 1994, “Technical Directives for Standardisation of GPS Time
Receiver Software”, Metrologia 31, 69-79.

Motorola GPS Receiver

Counter/Timer
(HP 53131A)

Computer
(Linux PC)

Link to NML
(Internet or modem)

1 pps

1pps from
local laboratoryC

on
tr

ol

Figure 1: Schematic diagram of the NML GPSCV time transfer system based on the Motorola VP
Oncore GPS engine.

Figure 2: Zero-baseline comparison between the NML Motorola-based system and an AOA
TTR6 system sharing a common timing reference. The solid line is a least-squares fit to the data,
and has a slope of 17.3 ps/day and an RMS scatter of 7.8 ns.

Motorola VP Oncore
GPS Receiver

IoTech Micro 488/p
RS232/GPIB converter

HP 53131
Counter/Timer

1 pps

Stop

Local Reference
1 pps

Start

Program
“onclog ”

Data file
“MJD.rxrawdata ”

Program
“rinexlog”

Data file
“MJD.rinex”

Program
“readlog ”

Data file
“MJD.notime ”

Program
“get_counter_data”

Data file
“cctf_header”

Program
“combine”

Data file
“MJD.cvdata .cctf.all”

Program
“schedule_extract_all”

Data file
“sched ”
(BIPM

tracking schedule)

Program
“quadfits ”

Data file
“MJD.15_sec_fits_ cctf”

Program
“corrections2”

Data file
“MJD.15_sec_fits_ corr”

Program
“linearfits ”

Data file
“MJD.cctf_final”

Shell command
in process script

to add header

Data file
“cctf_header”

(antenna coords)

Data file
“cctf.setup”

Data file
“MJD.cctf.nocksum ”

Program
“checksums ”

Data file
“MJD.cctf”

(completed CCTF file)

Data file
“MJD.cvdata ”

Data file
“MJD.cvtime ”

Block diagram of CCTF software

Data files in shaded boxes are
edited by the user, and contain
basic setup data such as antenna
coordinates and tracking schedules.
All other data files are generated
by the system.

Data files
“counter.setup”

“cctf.setup”

Program
“track_sort”

Data file
“MJD.15_sec_fits_ cctf”

Motorola VP Oncore
GPS Receiver

IoTech Micro 488/p
RS232/GPIB converter

HP 53131
Counter/Timer

1 pps

Stop

Local Reference
1 pps

Start

Motorola VP Oncore
GPS Receiver

IoTech Micro 488/p
RS232/GPIB converter

HP 53131
Counter/Timer

1 pps

Stop

Local Reference
1 pps

Start

Program
“onclog ”

Data file
“MJD.rxrawdata ”

Program
“rinexlog”

Data file
“MJD.rinex”

Program
“readlog ”

Data file
“MJD.notime ”

Program
“get_counter_data”

Data file
“cctf_header”

Program
“combine”

Data file
“MJD.cvdata .cctf.all”

Program
“schedule_extract_all”

Data file
“sched ”
(BIPM

tracking schedule)

Program
“quadfits ”

Data file
“MJD.15_sec_fits_ cctf”

Program
“corrections2”

Data file
“MJD.15_sec_fits_ corr”

Program
“linearfits ”

Data file
“MJD.cctf_final”

Shell command
in process script

to add header

Data file
“cctf_header”

(antenna coords)

Data file
“cctf.setup”

Data file
“MJD.cctf.nocksum ”

Program
“checksums ”

Data file
“MJD.cctf”

(completed CCTF file)

Data file
“MJD.cvdata ”

Data file
“MJD.cvtime ”

Block diagram of CCTF software

Data files in shaded boxes are
edited by the user, and contain
basic setup data such as antenna
coordinates and tracking schedules.
All other data files are generated
by the system.

Data files
“counter.setup”

“cctf.setup”

Program
“track_sort”

Data file
“MJD.15_sec_fits_ cctf”

Figure 3. Block diagram of data processing software for CCTF GPS Common-View time transfer
system.

